
S. Praveenkumar Reddy et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 3), April 2014, pp.37-42

www.ijera.com 37 | P a g e

Efficient Hybrid Method for Binary Floating Point Multiplication

S. Praveenkumar Reddy, S. Parvathi Nair
Dept. of Electronics and Communication Engineering SRM University Chennai, India

Dept. of Electronics and Communication Engineering SRM University Chennai, India

Abstract
This paper presents a high speed binary floating point multiplier based on Hybrid Method. To improve speed

multiplication of mantissa is done using Hybrid method replacing existing multipliers like Carry Save

Multiplier, Dadda Multiplier and Modified Booth Multiplier. Hybrid method is a combination of Dadda

Multiplier and Modified Radix-8 Booth Multiplier. The design achieves high speed with maximum frequency of

555 MHz compared to existing floating point multipliers. The multiplier implemented in Verilog HDL and

analyzed in Quartus II 10.0 version. Hybrid Multiplier is compared with existing multipliers.

Keywords— Hybrid method, Dadda Multiplier, Booth Multiplier, Floating point multiplication, Verilog HDL;

I. INTRODUCTION
Most of the DSP applications need floating

point numbers multiplication. The possible ways to

represent real numbers in binary format floating point

numbers are; the IEEE 754 standard [1] represents

two floating point formats, Binary interchange format

and Decimal interchange format. Single precision

normalized binary interchange format is implemented

in this design. Representation of single precision

binary format is shown in Fig.1 starting from MSB it

has a one bit sign (S), an eight bit exponent (E), and a

twenty three bit fraction (M or Mantissa). Adding an

extra bit to the fraction to form and is defined as

significand1. If the exponent is greater than 0 and

smaller than 255, and there is 1 in the MSB of the

significand then the number is said to be a

normalized number; in this case the real number is

represented by (1).

Fig. 1. IEEE single precision floating point format

Z = (-1
S
) * 2

(E - Bias)
 * (1.M) (1)

Where , M = n22 2
-1

 + n21 2
-2

 + n20 2
-3

+…+ n1 2
-22

+ n0

2
-23

, Bias = 127.

Floating point multiplication of two

numbers is made in four steps:

Step a. Exponents of the two numbers are

added directly, extra bias is subtracted from the

exponent result.

Step b. Significands multiplication of the two

numbers using Dadda algorithm.

Step c. To find the sign of result, XOR operation is

done among sign bit of two numbers.

Step d. Finally the result is normalized such that there

should be 1 in the MSB of the result (leading one).

II. FLOATING POINT MULTIPLIER

ALGORITHM
The normalized floating point numbers have

the form of Z= (-1
S
) * 2

(E -Bias)
 * (1.M). The

following algorithm is used to multiply two floating

point numbers.

1. Significand multiplication i.e. (1.M1*1.M2).

2. Placing the decimal point in the result.

3. Exponent‟s addition i.e. (E1 + E2 - Bias).

4. Getting the sign i.e. s1 xor s2.

5. Normalizing the result i.e. obtaining 1 at the

MSB of the significand.

6. Rounding implementation.

Consider the following IEEE 754 single

precision floating point numbers to perform the

multiplication, but the number of mantissa bits is

reduced for simplification. Here only 5 bits are

considered while still considering one bit for

normalized numbers.

A = 0 10000001 01100 = 5.5, B = 1 10000100 00011

= -35

By following the algorithm the

multiplication of A and B is

1. Significand Multiplication: 1.01100

 ×1.00011

 101100

 101100

 000000

 000000

 000000

 101100

 011000000100

RESEARCH ARTICLE OPEN ACCESS

S. Praveenkumar Reddy et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 3), April 2014, pp.37-42

www.ijera.com 38 | P a g e

2. Normalizing the result: 1.1000000100

3. Adding two exponents: 10000001

 +10000100

 100000101

The result after adding two exponents is not

true exponent and is obtained by subtracting bias

value i.e 127. The same is shown in following

equations.

 E1 = E1-true + bias

 E2 = E2-true + bias

 E1 + E2 = E1-true + E2-true + 2 x bias

Therefore

 Etrue= E1 + E2 – bias.

From the above analysis bias is added twice.

Hence bias has to be subtracted once from the result.

 100000101

 -001111111

 10000110

4. Sign bit of result is extracted by doing XOR

operation of

sign bit of multiplier and multiplicand:

 1 10000110 01.1000000100

5. Then normalize the result so that there is a 1 just

before the radix point (decimal point). Moving the

radix point one place

to the left increments the exponent by 1; moving one

place to the right decrement the exponent by 1.

6. If the mantissa bits are more than 5 bits (mantissa

available bits), rounding is needed. If we applied the

truncation rounding mode then the stored value is:

 1 10000110 10000.

In this paper, we are presenting a floating

point multiplier in which rounding support is not

implemented. By this, more precision can be attained

in MAC unit and this will be accessed by the

multiplier or by a floating point adder unit. Figure 2

shows the block diagram of the multiplier structure:

Exponents calculator, Mantissa multiplier and sign

bit calculator, using the pipelining concept.

Two 24 bit significands are multiplied and

the result is a 48 bit product, denoting this as

Intermediate Result (IR). The IR width is 48-bit i.e.

47 down to 0 and the decimal point is located

between bits 46 and 45 in the IR. Each block is

elaborated in the following sections. In [3], the

design of an efficient implementation of single

precision floating point multiplier was done.

 S1

 S2

 E1

 E2

 M1

 M2

Fig. 2. Floating Point Multiplier Block Diagram

III. BLOCKS OF FLOATING POINT

MULTIPLIER
A. Sign Calculator

The main component of Sign calculator is

XOR gate. XOR operation is performed between the

Sign bits of input binary floating point numbers. If

any one of the numbers is negative then result will be

negative. The result will be positive if two numbers

are having same sign.

B. Exponent Adder

This sub-block adds the exponents of the

two floating point numbers and the Bias (127) is

subtracted from the result to get true result. For

Single precision Floating point Multiplication

addition is done on two 8 bit exponents.

 Exponent (E) = E1 + E2 – bias

C. Significand multiplication using Unsigned

Multiplier

Significand will be formed by adding an

extra one bit to the Fraction (or) Mantissa part.

Significand multiplication is done using Unsigned

Multipliers.

i. Significand Multiplication using Carry Save

Multiplier

This unit is used to multiply the two

unsigned significand numbers and it places the

decimal point in the multiplied product. The unsigned

significand multiplication is done on 24 bit. The

result of this significand multiplication will be called

the IR. Multiplication is to be carried out so as not to

affect the whole multiplier‟s performance. In this

carry save multiplier architecture is used for 24X24

bit as it has a moderate speed with a simple

architecture. In the carry save multiplier [2], the carry

bits are passed diagonally downwards i.e. the carry

bit is propagated to the next stage. It is a parallel

Sign Calculator

Exponent

Calculator

Mantissa

Multiplier

Normalization

Unit

Out

S. Praveenkumar Reddy et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 3), April 2014, pp.37-42

www.ijera.com 39 | P a g e

multiplier for unsigned operands. It is composed of 2-

input AND gates for producing the partial products, a

series of Carry save adders for adding them and a

Ripple-carry adder for producing the final result

(vector merging stage). Carry save multipliers

consists of Full adders and Half adders.

The count of adders (Half adders and Full

adders) in each stage is one less than the significand

size. For example, an 8x8 carry save multiplier is

shown in Figure 3 and it has the following stages:

1. The first stage consists of six full adders and a

half adder.

2. Middle stages; each consists of six full adders

and a half adder.

3. The vector merging stage consists of one half

adder and six full adders.

The decimal point is placed between bits 45

and 46in the significand multiplier result.

Fig. 3. 8x8 bit Carry Save Multiplier

In Figure 3

 HA: Hall Adder.

 FA: Full Adder.

ii. Significand Multiplication Using Dadda

Multiplier

The Dadda multiplier is a hardware

multiplier design, invented by computer scientist

Luigi Dadda in 1965. It is slightly faster (for all

operand sizes) and requires fewer gates (for all but

the smallest operand sizes). Dadda proposed a

sequence of matrix heights that are predetermined to

give the minimum number of reduction stages. To

reduce the N by N partial product matrix, dada

multiplier develops a sequence of matrix heights that

are found by working back from the final two-row

matrix. In order to realize the minimum number of

reduction stages, the height of each intermediate

matrix is limited to the least integer that is no more

than 3/2 times the height of its successor.

The process of reduction for a Dadda

multiplier [5] is developed using the following

recursive algorithm.

1. Let d1 = 2 and dj+1 = [3.dj / 2], where dj is the

matrix height for the j-th stage from the end.

Find the largest j such that at least one column of

the matrix has more than dj bits.

2. Employ (3, 2) and (2, 2) counters to obtain a

reduced matrix with no more than dj elements in

any column.

3. Let j = j-1 and repeat step 2 until a matrix with

only two rows is generated.

This method of reduction, because it

attempts to compress each column, is called a column

compression technique. Another advantage of

utilizing Dadda multipliers is that it utilizes the

minimum number of (3, 2) counters. Therefore, the

number of intermediate stages is set in terms of lower

bounds: 2, 3, 4, 6, 9 . . .

For Dadda multipliers there are N
2
 bits in

the original partial product matrix and 4.N-3 bits in

the final two row matrix. Since each (3, 2) counter

takes three inputs and produces two outputs, the

number of bits in the matrix is reduced by one with

each applied (3, 2) counter therefore, the total

number of (3,2) counters is N
2
 – 4.N+3, the length of

the carry propagation adder is CPA length = 2.N–2.

Fig. 4. Dot diagram for 8 by 8 Dadda Multiplier

The number of (2, 2) counters used in

Dadda‟s reduction method equals N-1.The

calculation diagram for an 8X8 Dadda multiplier is

S. Praveenkumar Reddy et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 3), April 2014, pp.37-42

www.ijera.com 40 | P a g e

shown in figure 4. Dot diagrams are useful tool for

predicting the placement of (3, 2) and (2, 2) counter

in parallel multipliers. Each IR bit is represented by a

dot.The output of each (3, 2) and (2, 2) counter are

represented as two dots connected by a plain diagonal

line. The outputs of each (2, 2) counter are

represented as two dots connected by a crossed

diagonal line.

The 8 by 8 multiplier takes 4 reduction

stages, with matrix height 6, 4, 3 and 2. The

reduction uses 35 (3, 2) counters, 7 (2, 2) counters,

reduction uses 35 (3, 2) counters, 7 (2, 2) counters,

and a 14-bit carry propagate adder. The total delay

for the generation of the final product is the sum of

one AND gate delay, one (3, 2) counter delay for

each of the four reduction stages, and the delay

through the final 14-bit carry propagate adder arrive

later, which effectively reduces the worst case delay

of carry propagate adder. The decimal point is

between bits 45 and 46 in the significand IR.

The below Table 1 shows the number of

reduction stages required to implement Dadda

architecture for various number of bits.

Table 1: Number of Reduction Stages For Dadda

Multiplier

 iii. Significand Multiplication using Modified

Radix-8 Booth Multiplier

Modified Booth [4] is twice as fast as Booth

algorithm. Modified Booth encoding algorithm is an

efficient way to reduce the number of partial products

by grouping consecutive bits in one of the two

operands to form the signed multiples. The operand

that is Booth encoded is called the multiplier and the

other operand is called the multiplicand.

In the radix-8 booth multiplier we consider

group of 4 bits.. Each group is coded as a signed-digit

using the Table 2. Number of Partial products in

radix-8 is N/3+1

Radix-8 Booth algorithm scans strings of 4

bits with the algorithm given below:

1. Extending the sign bit position if require, to

ensure that n is even only.

2. Append a 0 to the right side of the least

significant bit of the multiplier.

3. According to the value of each vector, Partial

Product will be 0, +Y, –Y, +2Y, –2Y, +3Y, –3Y,

4Y, –4Y. The negative values of y are

considered by taking the 2„s complement to the

Booth recode the multiplier term, we have to

consider the bits in groups of four, in a way that

each group overlaps with the previous group by

one bit. Grouping starts from the LSB.

Table 2: Encoding Of Modified Radix-8 Booth

Multiplier

Quartets Signed digit value

0000 0

0001 +1

0010 +1

0011 +2

0100 +2

0101 +3

0110 +3

0111 +4

1000 –4

1001 –3

1010 –3

1011 –2

1100 –2

1101 –1

1110 –1

1111 0

Here we have an odd multiple of the

multiplicand, 3Y, which is not immediately available.

To generate it we need to perform this previous add:

2Y+Y=3Y. For finding 2Y multiplicand is left shifted

once and Y is the multiplicand itself.

 Let us take an example:

 Multiplicand is (00101010)

 Multiplier is (01010100)

Now we will consider the group of four bits

for Multiplier. Now according to the Table 2 we get

to know that

 (0010) – (+1)

 (0101) – (+3)

 (1000) – (–4)

Thus Multiplicand is multiplied with the

three encoded digits which are 1, 3 and –4.

 (i) –4 * (00101010) = 01011000

 Bits in Multiplier(N) Number of Stages

3 1

4 2

5 ≤ N≤ 6 3

7 ≤ N ≤ 9 4

10 ≤ N ≤ 13 5

14 ≤ N ≤ 19 6

20 ≤ N ≤ 28 7

29 ≤ N ≤ 42 8

43 ≤ N ≤ 63 9

63 ≤ N ≤ 94 10

S. Praveenkumar Reddy et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 3), April 2014, pp.37-42

www.ijera.com 41 | P a g e

 And now 11111111 is added with the result

because of the negative sign. So final result of

multiplication of -4 is 1111111101011000, here

negative term sign is extended.

 (ii) 3* (00101010) = 01111110

Here 00000 is added with the result because

of the positive sign. So final result is

0000001111110. Now the result is added to previous

result with 3 bits shifted left.

 (iii) 1* (00101010) = 00101010

Here 00000 is added with the result because

of the positive sign. So final result is 0000101010.

Now the result is added to previous result with 3 bits

shifted left. Final result after adding all the partial

products is 0000110111001000, here we have

discarded the carried high bit.

By using this Modified Radix-8 Booth

multiplier we will perform 24 bit significand

multiplication.

 iv. Proposed Multiplier

Hybrid Multiplier:

Hybrid Multiplier [6] is a combination of

Modified Radix-8 Booth Multiplier and Dadda

algorithm. By using Modified Radix-8 Booth

Multiplier we will generate partial products and that

partial products are reduced by using Dadda

algorithm.

 Modified Radix-8 Booth Multiplier generates

N/3+1 partial products. These partial products are

reduced by using Dadda algorithm. The number of

stages in Dadda algorithm is shown in Table 1 in

accordance to number of partial products.

From example, as explained in Modified

radix-8 booth multiplier

 Multiplicand is (00101010) -- 42

 Multiplier is (01010100) -- 84

 00101010

 X 01010100

 1111111101011000

 0000001111110

 0000101010

 0000001101001000

 0000101010

 0000110111001000

By using this hybrid multiplier we will

perform 24 bit significand multiplication. Here stages

are less compared to previous multipliers and

therefore it has high speed.

D. Normalizing Unit:

 The result of the significand multiplication

(intermediate product) must be normalizing. Having a

leading „1‟ just immediate to the left of the decimal

point (i.e. in the bit 46 in the intermediate product) is

known as a normalized number. Since the inputs are

normalized numbers then the intermediate product

has the leading one at bit 46 or 47.

1. No shift is needed the intermediate product

is known to be a normalized number when the one is

at bit 46 (i.e. to the left of the decimal point) .

2. The exponent is incremented by 1 if the

leading one is at bit 47 then the intermediate product

is shifted to the right.

IV. MULTIPLIER PIPELINING
In order to enhance the performance of the

multiplier, three pipelining stages are used to divide

the critical path thus increasing the maximum

operating frequency of the multiplier.

The pipelining stages are embedded at the

following locations:

1. Before the bias subtraction; in the middle of the

significand multiplier and in the middle of the

exponent adder.

2. After the significand multiplier and the exponent

adder.

3. Sign, exponent and mantissa bits; at the floating

point multiplier outputs.

Fig. 5. Figure shows the pipelining stages as dotted

lines.

V. SIMULATION RESULTS
The simulation results for corresponding

inputs are shown in Fig. 6. The simulation is done

using Altera Modelsim 6.5e. Considering the random

floating point numbers,

Inputs: a = 32‟H41F40000; (30.5)

 b = 32‟HC2220000; (- 40.5)

Output: result = 32‟HC49A6800;

Top Multiplier

Sign

Bit

Exponent

Adder

Significand

Multiplier

Normalizer

S. Praveenkumar Reddy et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 3), April 2014, pp.37-42

www.ijera.com 42 | P a g e

Here the input „a‟ is positive, input „b‟ is

negative, so the output result will be negative whose

sign bit is „1‟. Output is obtained in latency of three

clock cycles.

Fig. 6. Floating point multiplier Simulation

The synthesis results of Floating point

multiplier using different multipliers are calculated

using Quartus II 10.0 [7] is shown in following Table

3.

Table 3: Area, Power and Frequency comparision

between different Floating Point Multipliers.

VI. CONCLUSION AND

FUTUREWORK
This paper describes an implementation of a

floating point multiplier using Dadda Multiplier that

supports the IEEE 754-2008 binary interchange

format; the multiplier is more precise because it

doesn‟t implement rounding and just presents the

significand multiplication result as is (48 bits). The

significand multiplication time is reduced by using

Hybrid method. Speed achieved using hybrid method

is 555 MHz. Double precision Floating Point

Multiplication can also be done using same method.

REFERENCES
[1] IEEE 754-2008, IEEE Standard for Floating-

Point Arithmetic, 2008.

[2] Jeevan. B, Narender. S, Reddy. C. V. K &

Sivani K. “A high speed binary floating point

multiplier using Dadda algorithm” IEEE

Conference on computing, 2013 IEEE.

[3] Mohamed Al-Ashrfy, Ashraf Salem and

Wagdy Anis “An Efficient implementation

of Floating Point Multiplier” IEEE

Transaction on VLSI, 2011 IEEE, Mentor

Graphics.

[4] Deepali Chandel, Gagan Kumawat, Pranay

Lahoty, Vidhi Vart Chandrodaya, Shailendra

Sharma, “Modified Booth Multiplier: Ease

of multiplication”, International Journal of

Emerging Technology and Advanced

Engineering, Volume 3, Issue 3, March

2013.

[5] Whytney J. Townsend, Earl E. Swartz, “A

Comparison of Dadda and Wallace

multiplier delays”. Computer science

Engineering Research Center, The

University of Texas.

[6] Brian Millar, Philip E. Madrid, Earl E.

Swartzlander, Jr. “A fast hybrid multiplier

combining of booth and wallace/dadda

algorithms”

[7] Introduction to Altera Quartus II Software

10.0 Version.

 Floating

point

multipli

er using

Hybrid

method

Floating

point

multiplier

using

radix-8

booth

multiplier

Floating

point

multiplie

r using

Dadda

multiplie

r

Floating

point

multiplier

using

Carry

save

multiplier

Logic

Elemen

ts

 2021

 1851

 1432

 1543

Power

(mW)

 179.85

 178.99

 131.24

 192.46

Freq

(MHz)

 555.15

 542.79

 526.86

483.09

